skip to main content


Search for: All records

Creators/Authors contains: "Sun, Yizhou"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Learning multi-agent system dynamics has been extensively studied for various real-world applications, such as molecular dynamics in biology, multi-body system in physics, and particle dynamics in material science. Most of the existing models are built to learn single system dynamics, which learn the dynamics from observed historical data and predict the future trajectory. In practice, however, we might observe multiple systems that are generated across different environments, which differ in latent exogenous factors such as temperature and gravity. One simple solution is to learn multiple environment-specific models, but it fails to exploit the potential commonalities among the dynamics across environments and offers poor prediction results where per-environment data is sparse or limited. Here, we present GG-ODE (Generalized Graph Ordinary Differential Equations), a machine learning framework for learning continuous multi-agent system dynamics across environments. Our model learns system dynamics using neural ordinary differential equations (ODE) parameterized by Graph Neural Networks (GNNs) to capture the continuous interaction among agents. We achieve the model generalization by assuming the dynamics across different environments are governed by common physics laws that can be captured via learning a shared ODE function. The distinct latent exogenous factors learned for each environment are incorporated into the ODE function to account for their differences. To improve model performance, we additionally design two regularization losses to (1) enforce the orthogonality between the learned initial states and exogenous factors via mutual information minimization; and (2) reduce the temporal variance of learned exogenous factors within the same system via contrastive learning. Experiments over various physical simulations show that our model can accurately predict system dynamics, especially in the long range, and can generalize well to new systems with few observations. 
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  2. Multi-agent dynamical systems refer to scenarios where multiple units (aka agents) interact with each other and evolve collectively over time. For instance, people’s health conditions are mutually influenced. Receiving vaccinations not only strengthens the longterm health status of one unit but also provides protection for those in their immediate surroundings. To make informed decisions in multi-agent dynamical systems, such as determining the optimal vaccine distribution plan, it is essential for decision-makers to estimate the continuous-time counterfactual outcomes. However, existing studies of causal inference over time rely on the assumption that units are mutually independent, which is not valid for multi-agent dynamical systems. In this paper, we aim to bridge this gap and study how to estimate counterfactual outcomes in multi-agent dynamical systems. Causal inference in a multi-agent dynamical system has unique challenges: 1) Confounders are timevarying and are present in both individual unit covariates and those of other units; 2) Units are affected by not only their own but also others’ treatments; 3) The treatments are naturally dynamic, such as receiving vaccines and boosters in a seasonal manner. To this end, we model a multi-agent dynamical system as a graph and propose a novel model called CF-GODE (CounterFactual Graph Ordinary Differential Equations). CF-GODE is a causal model that estimates continuous-time counterfactual outcomes in the presence of inter-dependencies between units. To facilitate continuous-time estimation,we propose Treatment-Induced GraphODE, a novel ordinary differential equation based on graph neural networks (GNNs), which can incorporate dynamical treatments as additional inputs to predict potential outcomes over time. To remove confounding bias, we propose two domain adversarial learning based objectives that learn balanced continuous representation trajectories, which are not predictive of treatments and interference. We further provide theoretical justification to prove their effectiveness. Experiments on two semi-synthetic datasets confirm that CF-GODE outperforms baselines on counterfactual estimation. We also provide extensive analyses to understand how our model works. 
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  3. A graph-based machine learning model is built to predict atom dynamics from their static structure, which, in turn, unveils the predictive power of static structure in dynamical evolution of disordered phases. 
    more » « less
    Free, publicly-accessible full text available August 29, 2024
  4. This research studies graph-based approaches for Answer Sentence Selection (AS2), an essential component for retrieval-based Question Answering (QA) systems. During offline learning, our model constructs a small-scale relevant training graph per question in an unsupervised manner, and integrates with Graph Neural Networks. Graph nodes are question sentence to answer sentence pairs. We train and integrate state-of-the-art (SOTA) models for computing scores between question-question, question-answer, and answer-answer pairs, and use thresholding on relevance scores for creating graph edges. Online inference is then performed to solve the AS2 task on unseen queries. Experiments on two well-known academic benchmarks and a real-world dataset show that our approach consistently outperforms SOTA QA baseline models. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  5. Taxonomies, which organize knowledge hierarchically, support various practical web applications such as product navigation in online shopping and user profle tagging on social platforms. Given the continued and rapid emergence of new entities, maintaining a comprehensive taxonomy in a timely manner through human annotation is prohibitively expensive. Therefore, expanding a taxonomy automatically with new entities is essential. Most existing methods for expanding taxonomies encode entities into vector embeddings (i.e., single points). However, we argue that vectors are insufcient to model the “is-a” hierarchy in taxonomy (asymmetrical relation), because two points can only represent pairwise similarity (symmetrical relation). To this end, we propose to project taxonomy entities into boxes (i.e., hyperrectangles). Two boxes can be "contained", "disjoint" and "intersecting", thus naturally representing an asymmetrical taxonomic hierarchy. Upon box embeddings, we propose a novel model BoxTaxo for taxonomy expansion. The core of BoxTaxo is to learn boxes for entities to capture their child-parent hierarchies. To achieve this, BoxTaxo optimizes the box embeddings from a joint view of geometry and probability. BoxTaxo also ofers an easy and natural way for inference: examine whether the box of a given new entity is fully enclosed inside the box of a candidate parent from the existing taxonomy. Extensive experiments on two benchmarks demonstrate the efectiveness of BoxTaxo compared to vector based models. 
    more » « less
    Free, publicly-accessible full text available April 30, 2024
  6. Leading graph ordinary differential equation (ODE) models have offered generalized strategies to model interacting multi-agent dynamical systems in a data-driven approach. They typically consist of a temporal graph encoder to get the initial states and a neural ODE-based generative model to model the evolution of dynamical systems. However, existing methods have severe deficiencies in capacity and efficiency due to the failure to model high-order correlations in long-term temporal trends. To tackle this, in this paper, we propose a novel model named High-Order graPh ODE (HOPE) for learning from dynamic interaction data, which can be naturally represented as a graph. It first adopts a twin graph encoder to initialize the latent state representations of nodes and edges, which consists of two branches to capture spatio-temporal correlations in complementary manners. More importantly, our HOPE utilizes a second-order graph ODE function which models the dynamics for both nodes and edges in the latent space respectively, which enables efficient learning of long-term dependencies from complex dynamical systems. Experiment results on a variety of datasets demonstrate both the effectiveness and efficiency of our proposed method. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  7. Open Source Software (OSS) is forming the spines of technology infrastructures, attracting millions of talents to contribute. Notably, it is challenging and critical to consider both the developers’ interests and the semantic features of the project code to recommend appropriate development tasks to OSS developers. In this paper, we formulate the novel problem of code recommendation, whose purpose is to predict the future contribution behaviors of developers given their interaction history, the semantic features of source code, and the hierarchical file structures of projects. We introduce CODER, a novel graph-based CODE Recommendation framework for open source software developers, which accounts for the complex interactions among multiple parties within the system. CODER jointly models microscopic user-code interactions and macroscopic user-project interactions via a heterogeneous graph and further bridges the two levels of information through aggregation on filestructure graphs that reflect the project hierarchy. Moreover, to overcome the lack of reliable benchmarks, we construct three largescale datasets to facilitate future research in this direction. Extensive experiments show that our CODER framework achieves superior performance under various experimental settings, including intraproject, cross-project, and cold-start recommendation. 
    more » « less
    Free, publicly-accessible full text available April 30, 2024
  8. Learning logical rules is critical to improving reasoning in KGs. This is due to their ability to provide logical and interpretable explanations when used for predictions, as well as their ability to generalize to other tasks, domains, and data. While recent methods have been proposed to learn logical rules, the majority of these methods are either restricted by their computational complexity and cannot handle the large search space of large-scale KGs, or show poor generalization when exposed to data outside the training set. In this paper, we propose an endto-end neural model for learning compositional logical rules called NCRL. NCRL detects the best compositional structure of a rule body, and breaks it into small compositions in order to infer the rule head. By recurrently merging compositions in the rule body with a recurrent attention unit, NCRL finally predicts a single rule head. Experimental results show that NCRL learns high-quality rules, as well as being generalizable. Specifically, we show that NCRL is scalable, efficient, and yields state-of-the-art results for knowledge graph completion on large-scale KGs. Moreover, we test NCRL for systematic generalization by learning to reason on small-scale observed graphs and evaluating on larger unseen ones. 
    more » « less
  9. Product catalogs, conceptually in the form of text-rich tables, are self-reported by individual retailers and thus inevitably contain noisy facts. Verifying such textual attributes in product catalogs is essential to improve their reliability. However, popular methods for processing free-text content, such as pre-trained language models, are not particularly effective on structured tabular data since they are typically trained on free-form natural language texts. In this paper, we present Tab-Cleaner, a model designed to handle error detection over text-rich tabular data following a pre-training / fine-tuning paradigm. We train Tab-Cleaner on a real-world Amazon Product Catalog table w.r.t millions of products and show improvements over state-of-the-art methods by 16% on PR AUC over attribute applicability classification task and by 11% on PR AUC over attribute value validation task. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  10. Knowledge graph embeddings (KGE) have been extensively studied to embed large-scale relational data for many real-world applications. Existing methods have long ignored the fact many KGs contain two fundamentally different views: high-level ontology-view concepts and fine-grained instance-view entities. They usually embed all nodes as vectors in one latent space. However, a single geometric representation fails to capture the structural differences between two views and lacks probabilistic semantics towards concepts’ granularity. We propose Concept2Box, a novel approach that jointly embeds the two views of a KG using dual geometric representations. We model concepts with box embeddings, which learn the hierarchy structure and complex relations such as overlap and disjoint among them. Box volumes can be interpreted as concepts’ granularity. Different from concepts, we model entities as vectors. To bridge the gap between concept box embeddings and entity vector embeddings, we propose a novel vector-to-box distance metric and learn both embeddings jointly. Experiments on both the public DBpedia KG and a newly-created industrial KG showed the effectiveness of Concept2Box. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024